
Apache Spark™ - Unified Engine for large-scale data analytics
Apache Spark is a multi-language engine for executing data engineering, data science, and machine learning on single-node machines or clusters.
Downloads - Apache Spark
Spark docker images are available from Dockerhub under the accounts of both The Apache Software Foundation and Official Images. Note that, these images contain non-ASF software …
PySpark Overview — PySpark 4.0.1 documentation - Apache Spark
Spark Connect is a client-server architecture within Apache Spark that enables remote connectivity to Spark clusters from any application. PySpark provides the client for the Spark …
Getting Started — PySpark 4.0.1 documentation - Apache Spark
There are more guides shared with other languages such as Quick Start in Programming Guides at the Spark documentation. There are live notebooks where you can try PySpark out without …
Spark Release 4.0.0 - Apache Spark
Apache Spark 4.0.0 marks a significant milestone as the inaugural release in the 4.x series, embodying the collective effort of the vibrant open-source community.
Spark 3.5.5 released - Apache Spark
Spark 3.5.5 released We are happy to announce the availability of Spark 3.5.5! Visit the release notes to read about the new features, or download the release today. Spark News Archive
Overview - Spark 3.5.6 Documentation
If you’d like to build Spark from source, visit Building Spark. Spark runs on both Windows and UNIX-like systems (e.g. Linux, Mac OS), and it should run on any platform that runs a …
Performance Tuning - Spark 4.0.1 Documentation
Apache Spark’s ability to choose the best execution plan among many possible options is determined in part by its estimates of how many rows will be output by every node in the …
Structured Streaming Programming Guide - Spark 4.0.1 …
Structured Streaming is a scalable and fault-tolerant stream processing engine built on the Spark SQL engine. You can express your streaming computation the same way you would express a …
From/to pandas and PySpark DataFrames - Apache Spark
Since pandas API on Spark does not target 100% compatibility of both pandas and PySpark, users need to do some workaround to port their pandas and/or PySpark codes or get familiar …