
如何评价 Meta 新论文 Transformers without Normalization?
Normalization这个事得好好掰扯掰扯。 上古时期,网络经常在初始几个iteration之后,loss还没下降就不动,必须得把每一层的gradient与weight的比值打印出来,针对性地调整每一层的初始 …
大模型 (LLM) 中常用的 Normalization 有什么? - 知乎
LayerNorm 其实目前主流的 Normalization 有个通用的公式 其中, 为均值, 为归一化的分母,比如对 LayerNorm 来说他是标准差,对 WeightNorm 来说是 L2 范数。 和 为可学习的参数,可 …
手机微信接收的文件存储在哪? - 知乎
我之前还在用QQ浏览器时在此页面直接用QQ浏览器打开 但其实此时微信并没有将这个文件放在你手机里大佬所说的那个位置,而是放在了一个你访问不了的文件夹里。(推测和那些微信占用 …
如何理解Normalization,Regularization 和 standardization?
May 16, 2017 · 如何理解Normalization,Regularization 和 standardization? 我知道的是:normalization和standardization是降低极端值对模型的影响. 前者是把数据全部转成从0-1; …
深度学习中 Batch Normalization为什么效果好? - 知乎
Normalization是一个统计学中的概念,我们可以叫它 归一化或者规范化,它并不是一个完全定义好的数学操作 (如加减乘除)。 它通过将数据进行偏移和尺度缩放调整,在数据预处理时是非常 …
CNN为什么要用BN, RNN为何要用layer Norm? - 知乎
Normalization 不管是 Batch Normalization 还是 Layer Normalization, Normalization的目的是为了把输入转化成均值为0方差为1的数据。 换句话说,这里的 Normalization 其实应称为 …
为什么Transformer要用LayerNorm? - 知乎
Leveraging Batch Normalization for Vision Transformers里面就说了: 其实可以的,但是直接把VIT中的LN替换成BN,容易训练不收敛,原因是FFN没有被Normalized,所以还要在FFN …
z-score 标准化 (zero-mean normalization) - 知乎
最常见的标准化方法就是 Z标准化,也是 SPSS 中最为常用的标准化方法,spss默认的标准化方法就是z-score标准化。 也叫 标准差 标准化,这种方法给予原始数据的均值(mean)和标准 …
如何评价Kaiming He的Transformers without Normalization?
Therefore, we consider activations of a neural network to be normalized, if both their mean and their variance across samples are within predefined intervals. If mean and variance of x are …
使用RELU 作为激活函数还需要 Batch Normalization吗? - 知乎
使用RELU 作为激活函数还需要 Batch Normalization吗? batch normalization是为了让每一层的对于activation的输入变成标准的高斯分布。 这样做的话对于sigmiod和tanh的好处是… 显示全部 …