We solve polynomials algebraically in order to determine the roots - where a curve cuts the \(x\)-axis. A root of a polynomial function, \(f(x)\), is a value for \(x\) for which \(f(x) = 0\).
A UNSW Sydney mathematician has discovered a new method to tackle algebra's oldest challenge—solving higher polynomial equations. Polynomials are equations involving a variable raised to powers, such ...
A mathematician has uncovered a way of answering some of algebra's oldest problems. University of New South Wales Honorary Professor Norman Wildberger, has revealed a potentially game-changing ...
New research details an intriguing new way to solve "unsolvable" algebra problems that go beyond the fourth degree – something that has generally been deemed impossible using traditional methods for ...
Polynomial equations are a cornerstone of modern science, providing a mathematical basis for celestial mechanics, computer graphics, market growth predictions and much more. But although most high ...
The theory of Appell polynomials has long intrigued researchers due to its elegant algebraic structure and rich connections with differential equations. At its core, an Appell sequence is ...
Equations, like numbers, cannot always be split into simpler elements. Researchers have now proved that such “prime” equations become ubiquitous as equations grow larger. Prime numbers get all the ...
Let Φ(z) = ∑∞ 0 βjz j have radius of convergence $r (0 < r < \infty)$ and no singularities other than poles on the circle |z| = r. A complete solution is ...